A Perturbation Bound of the Drazin Inverse of a Matrix by Separation of Simple Invariant Subspaces

نویسندگان

  • Yimin Wei
  • Xiezhang Li
  • Fanbin Bu
چکیده

A constructive perturbation bound of the Drazin inverse of a square matrix is derived using a technique proposed by G. Stewart and based on perturbation theory for invariant subspaces. This is an improvement of the result published by the authors Wei and Li [Numer. Linear Algebra Appl., 10 (2003), pp. 563–575]. It is a totally new approach to developing perturbation bounds for the Drazin inverse of a matrix. A numerical example which indicates the sharpness of the perturbation bound is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm

Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...

متن کامل

Singular constrained linear systems

In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...

متن کامل

Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices – Application of perturbation theory for simple invariant subspaces

Perturbation bounds for the relative error in the eigenvalues of diagonalizable and singular matrices are derived by using perturbation theory for simple invariant subspaces of a matrix and the group inverse of a matrix. These upper bounds are supplements to the related perturbation bounds for the eigenvalues of diagonalizable and nonsingular matrices. © 2006 Elsevier Inc. All rights reserved. ...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

Frameness bound for frame of subspaces

In this paper, we show that in each nite dimensional Hilbert space, a frame of subspaces is an ultra Bessel sequence of subspaces. We also show that every frame of subspaces in a nite dimensional Hilbert space has frameness bound.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2005